skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Patra, Moumita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Vehicular communication has emerged as a powerful tool for providing a safe and comfortable driving experience for users. Long Term Evolution (LTE) supports and enhances the quality of vehicular communication due to its properties such as, high data rate, spatial reuse, and low delay. However, high mobility of vehicles introduces a wide variety of security threats, including Denial-of-Service (DoS) attacks. In this paper, we propose an effective solution for real-time detection and localization of DoS attacks in an LTE-based vehicular network with mobile network components (e.g., vehicles, femto access points, etc.). We consider malicious data transmission by vehicles in two ways - using real identification (unintentional) and using fake identification. Our attack detection technique is based on data packet counter and average packet delivery ratio which helps to efficiently detect attack faster than traditional approaches. We use triangulation method for localizing the attacker, and analyze average packet delay incurred by vehicles by modelling the system as an M/M/m queue. Simulation results demonstrate that our proposed technique significantly outperforms state-of-the-art techniques. 
    more » « less