- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Patra, Moumita (3)
-
Mishra, Prabhat (2)
-
Bisht, Himanshu (1)
-
Dey, Manju (1)
-
Dey, Meenu Rani (1)
-
Kumar, Sathish (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bisht, Himanshu; Patra, Moumita; Kumar, Sathish (, 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC))
-
Dey, Manju; Patra, Moumita; Mishra, Prabhat (, Design, Automation & Test in Europe Conference & Exhibition (DATE))null (Ed.)Vehicular communication has emerged as a powerful tool for providing a safe and comfortable driving experience for users. Long Term Evolution (LTE) supports and enhances the quality of vehicular communication due to its properties such as, high data rate, spatial reuse, and low delay. However, high mobility of vehicles introduces a wide variety of security threats, including Denial-of-Service (DoS) attacks. In this paper, we propose an effective solution for real-time detection and localization of DoS attacks in an LTE-based vehicular network with mobile network components (e.g., vehicles, femto access points, etc.). We consider malicious data transmission by vehicles in two ways - using real identification (unintentional) and using fake identification. Our attack detection technique is based on data packet counter and average packet delivery ratio which helps to efficiently detect attack faster than traditional approaches. We use triangulation method for localizing the attacker, and analyze average packet delay incurred by vehicles by modelling the system as an M/M/m queue. Simulation results demonstrate that our proposed technique significantly outperforms state-of-the-art techniques.more » « less
An official website of the United States government
